

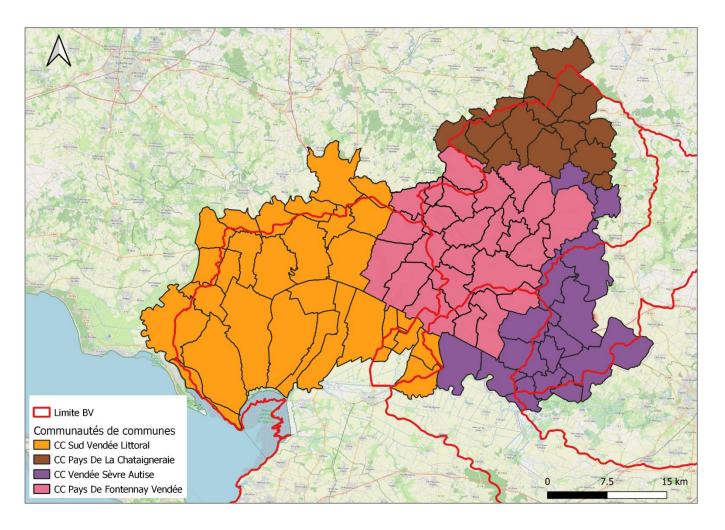
Phase 1 – Analyse préalable du site

17/03/2022

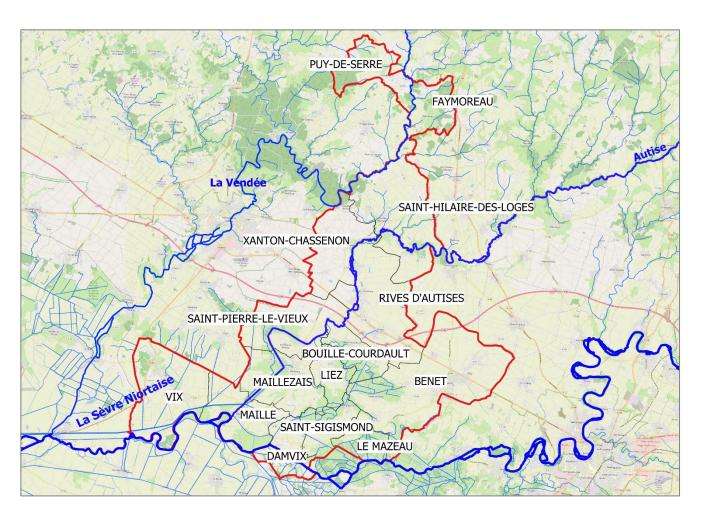
Sommaire

- 1. Contexte de l'étude
- 2. Recueil et analyse de données
- 3. Gouvernance
- 4. Analyse hydrogéomorphologique
- 5. Analyse des évènements historiques
- 6. Analyse des différents types d'inondation
- 7. Analyse des systèmes d'endiguement
- 8. Communication
- 9. Planning prévisionnel

Objectifs de l'étude


- La mise en œuvre <u>d'outils, supports et moyens innovants de communication-sensibilisation-association du public et</u> <u>des parties prenantes</u> sur les risques d'inondation ainsi que sur l'élaboration du PPRi ;
- Une <u>analyse générale des caractéristiques des inondations</u> de la zone d'étude liées au débordement de cours d'eau, au ruissellement pluvial ou à la remontée de nappe ;
- La <u>caractérisation des différents aléas et définition de la zone inondable</u> pour différents débits caractéristiques (périodes de retour 10, 50, 100 et 1000 ans);
- <u>Réaliser ou réviser des PPR inondations là où cela est nécessaire</u> (notamment la révision du PPRi de Fontenay le Comte et de la Vendée) sans modification des PPRL Bassin du Lay et Sèvre Niortaise ;
- De manière optionnelle, <u>l'analyse des enjeux du bassin de risque</u> et la caractérisation des enjeux et la réalisation de leur cartographie, ainsi que <u>l'élaboration du zonage réglementaire</u>.

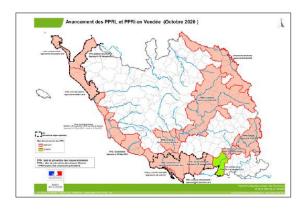
Déroulement en 4 phases de 2020 à 2023


Périmètre global de l'étude

- > 81 communes
- > 4 communautés de communes
- > Plus de 90 000 habitants

Communes concernées sur la CdC Vendée Sèvre Autise

- > 15 communes sur la zone d'étude
- Plus de 14 000 habitants



Etapes précédentes

- > 24 avril 2018 : réunion d'information avec les élus leur informant du lancement de la démarche
- > 2019 / début 2020 : lancement de la procédure de marché
- Été 2020 : marché notifié au Bureau d'étude ARTELIA (sous traitant : cabinet FRANCOM pour la partie « communication »
- > Septembre 2020 : démarrage de l'étude
- > 11 décembre 2020 : courrier d'information sur le lancement de l'étude + questionnaire
- ➤ 23 mars 2021 : COPIL de démarrage (4 COPIL sur chaque Communauté de Communes afin de respecter les règles sanitaires)



2. Recueil et analyse des données

Etudes précédentes

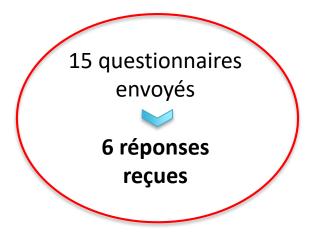
Bibliographie

Documents cadres et réglementaires

Enquêtes auprès des communes

Echanges avec les partenaires techniques

du Marais poitevin



2. Recueil et analyse des données

Enquêtes auprès des communes de la CDC Vendée Sèvre Autise

- > Evénements remarquables : Ruissellement pluvial, débordement, remontée de nappe ;
- > Enjeux touchés : habitations, surfaces agricoles, routes ;
- > Secteurs touchés : marais mouillés ;
- > Evolution marquante : construction de digues privées, arrachage de haies

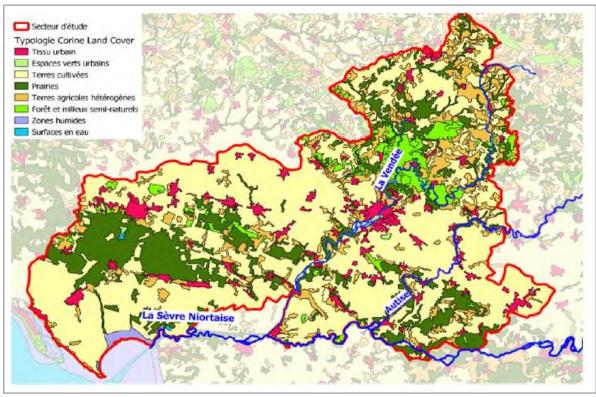
3. Gouvernance

- > GEMAPI : systèmes d'endiguement / Protection contre les inondations (PAPI)
 - SMVSA : bassins versants de la Vendée, de la Sèvre Niortaise et de l'Autise
 - SMBL : bassin versant du Lay
 - (SILEC côté Charente-Maritime)

> Planification :

- PLU/PLUi : EPCI
- SCOT Sud-Est Vendée : Fontenay Sud-Vendée Développement (3 EPCI)

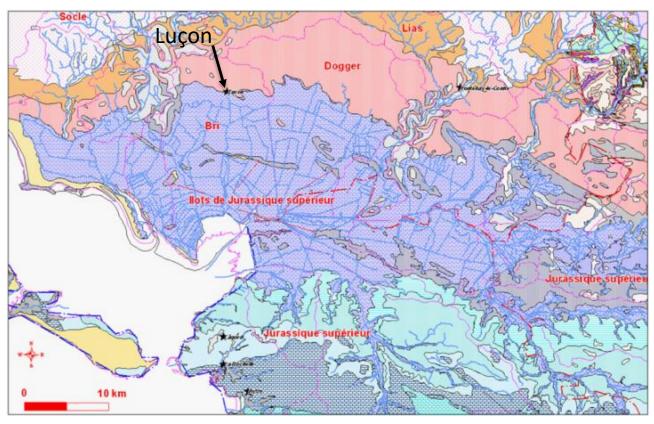
Eau:


- ASA, Fédération des Syndicats de Marais, Union des Marais Mouillés : réseau hydraulique, certains ouvrages, gestionnaires historiques des digues
- SMVSA : gestion des ouvrages de la Vendée
- Vendée Eau : complexe de Mervent
- IIBSN: gestion des ouvrages de la Sèvre Niortaise, des Autises (avec l'Union des marais mouillés) et du Mignon
- EPMP : gestion de l'eau sur la zone humide du Marais Poitevin et son bassin versant
- PNR: sauvegarde et restauration du Marais Poitevin, lien indirect avec la gestion de l'eau

Evolution de l'occupation du sol

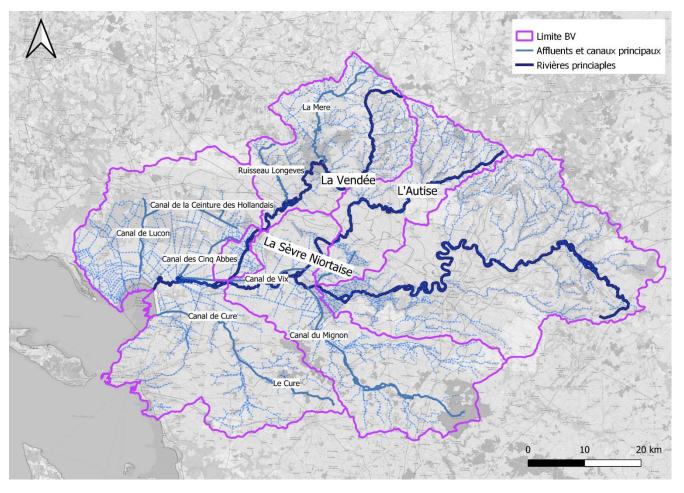
Année	Tissu urbain (%)	Espaces verts urbains (%)	Terres cultivées (%)	Prairies (%)	Terres agricoles hétérogènes (%)	Forêt et milieux semi-naturels (%)	Zones humides (%)	Surfaces en eau (%)
2000	4,71	0,06	57,82	18,00	13,48	5,10	0,52	0,29
2006	4,98	0,06	57,16	18,05	13,89	5,04	0,52	0,30
2012	5,39	0,13	56,84	17,86	13,84	5,10	0,53	0,32
2018	5,77	0,13	57,15	17,80	13,29	5,02	0,53	0,32
Evolution 2000-2018	1,06	0,07	-0,67	-0,20	-0,19	-0,08	0,01	0,03

- Occupation du sol fortement rurale
- > Evolution faible depuis 2000
- ➤ Légère croissance de l'aire urbaine



Occupation du sol 2018 (Source : Corine Land Cover)

Contexte géologique et hydrogéologique


- Marais : Vaste étendue sédimentaire déposée sur des terrains composés de plusieurs couches marnocalcaires, terrains constitués d'argiles alluvionnaires ;
- Marais en contact de nappes très réactives pouvant être sources de débordement ;
- Eaux de surface drainées vers la nappe entre mai et octobre;
- ➤ En bordure de marais et sur les anciennes iles: formations anciennes de calcaires fissurés (Dogger) et de marnes (Lias et Jurassique)

Carte géologique du secteur d'étude (Source : BRGM)

Bassin versant et réseau hydrographique

- > 3 rivières principales :
 - La Vendée
 - <u>L'Autise</u>
 - La Sèvre Niortaise
- > 5 canaux principaux :
 - Contrebot de Vix
 - Canal de Vix
 - Canal des 5 Abbés
 - Canal de la Ceinture des Hollandais
 - Canal de Luçon

Réseau hydrographique du secteur d'étude

Evolution historique du secteur d'étude

- Marais formé il y a 8000 ans suite à la fonte glaciaire et montée des eaux
- > Exploitation du marais Début des compagnes de dessèchements

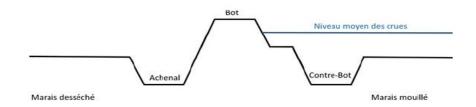
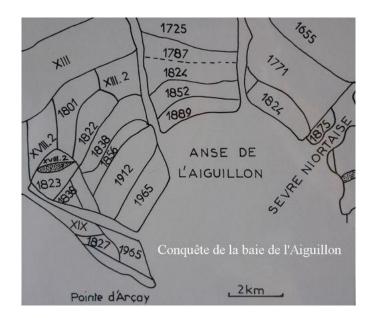
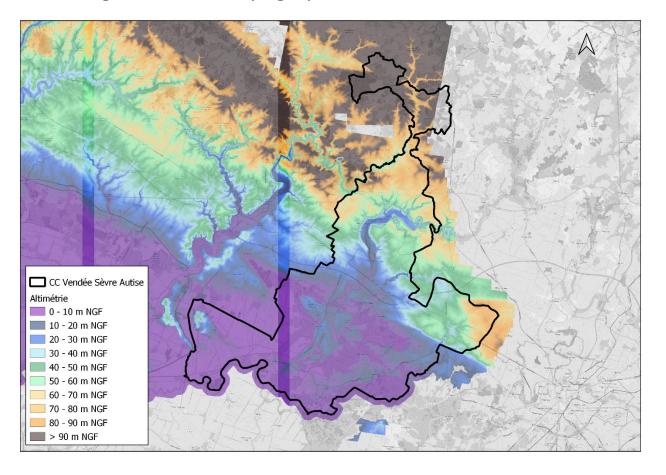
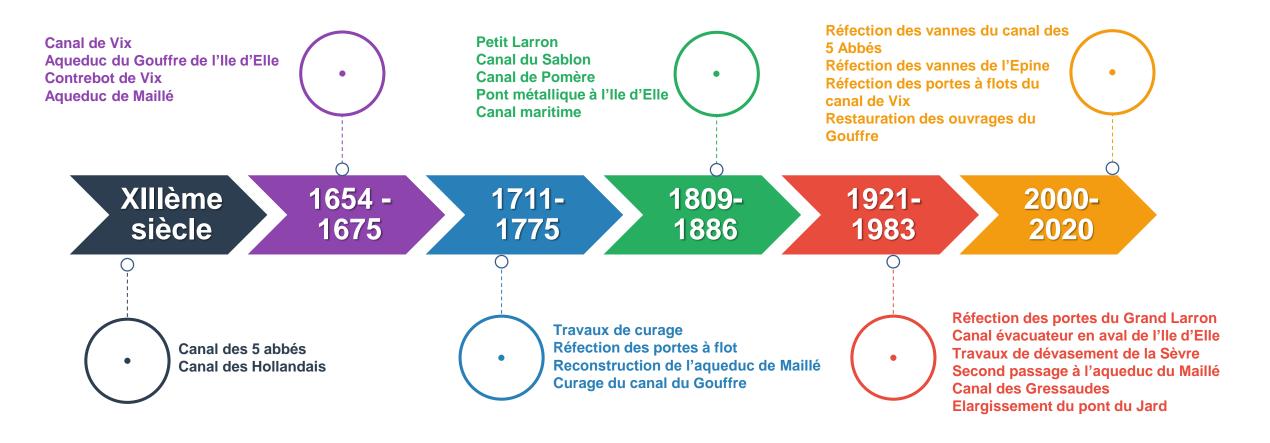



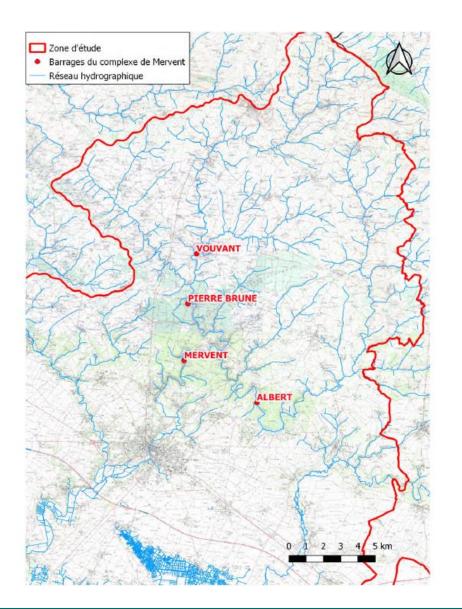
Schéma de représentation de la technique d'assèchement utilisée


Création de nombreux canaux


Topographie LIDAR

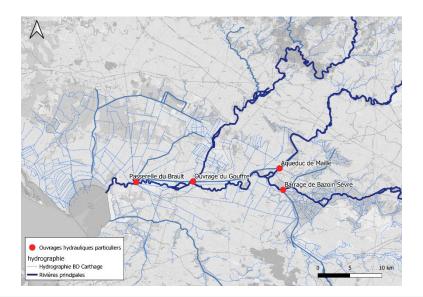
> Levés laser aérien : visualisation globale de la topographie


Principaux travaux réalisés dans le marais Poitevin



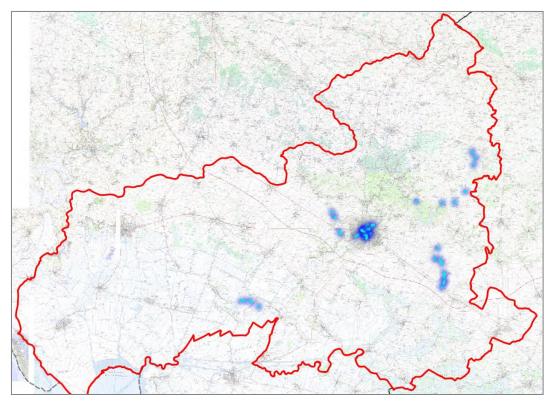
Aménagements des barrages

- > Complexe de Mervent :
 - Mervent (1955-1956)
 - Albert (1961)
 - Vouvant (1976-1977)
 - Pierre Brune (1977-1979)
- Laminage des crues de la Vendée



Ouvrages hydrauliques

- ➤ Plus de 200 ouvrages (ponts, radiers, seuils) contrôlent le fonctionnement hydraulique du marais Poitevin ;
- 4 ouvrages particuliers :
 - Aqueduc de Maillé
 - Gouffre de l'Ile d'Elle
 - Nœud hydraulique de Bazoin
 - Exutoires en mer au Brault

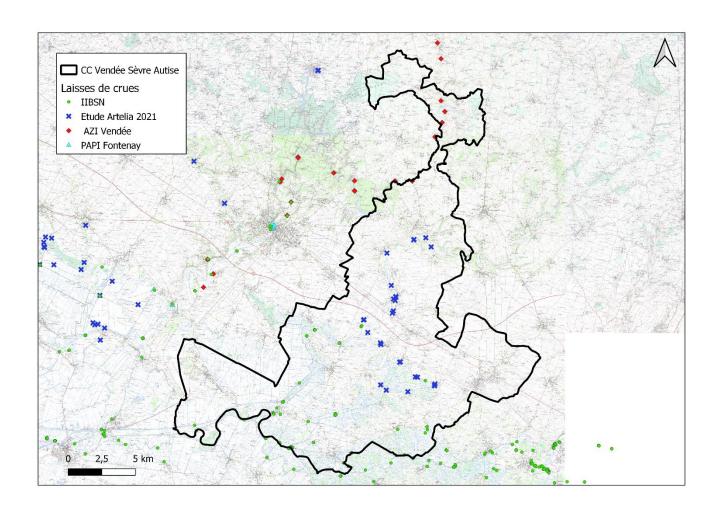

Siphon asséché au Gouffre de l'Ile d'Elle

Recensement des phénomènes d'inondation passés

- Collecte de données relatives aux différents événements historiques entre 1420 et 2021:
 - Archives départementales de la Vendée
 - Archives numériques de la Vendée
 - Archives départementales des Deux-Sèvres
 - Inventaire du patrimoine de la Sèvre Niortaise Yannis Suire
 - Informations transmises par les communes via les questionnaires
 - Informations recueillies lors des échanges avec les partenaires techniques
 - Informations recueillies sur lors des investigations de terrain

	Crues marquantes		
	■ 26 novembre 1770		
	■ 4 novembre 1960		
Vendée	■ 3 janvier 1961		
	■ 9-10 avril 1983		
	2 janvier 1961		
Autise	■ 4 décembre 1992		
	hiver 1872		
	février 1936		
Sèvre Niortaise	décembre 1982		
	■ janvier 1994		

Localisation des informations recensées via les archives et les questionnaires

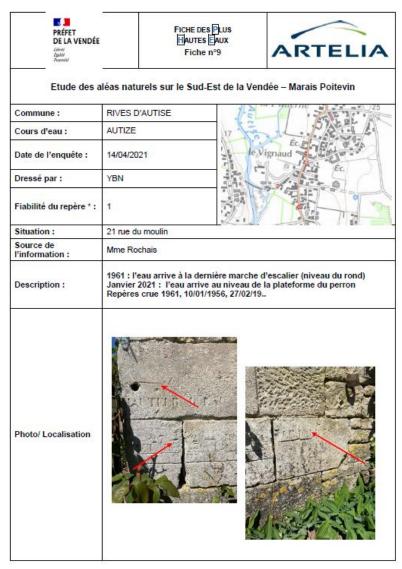

Laisses de crues

> 272 laisses de crue sur le secteur d'étude:

- Laisses de crues transmises par l'IIBSN (182)
- Laisses de crue collectées dans le cadre du PAPI de Fontenay-le-Comte (10)
- Laisses de la crue de 1960 issues de l'Atlas des Zones Inondables de la Vendée (23)
- Laisses de crue recensées par Artelia au cours d'enquêtes de terrain (57)

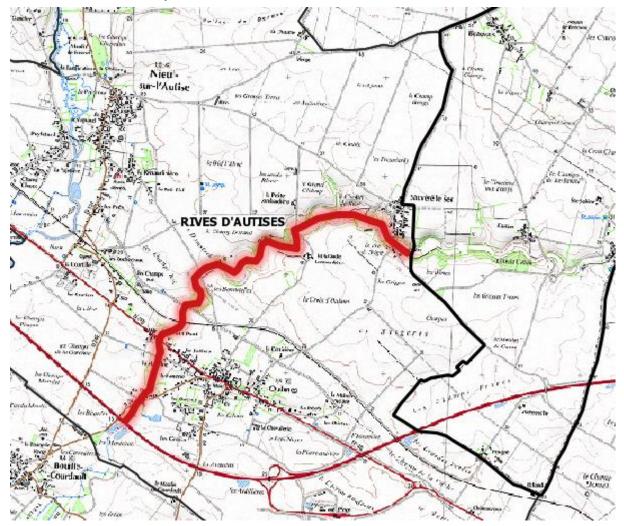
Sur le territoire de la CdC Vendée Sèvre Autise :

> 140 laisses de crues recensées



Laisses de crues

- > Fiches relatives aux nouvelles laisses de crue
 - Localisation
 - Source de l'information
 - Date de la crue
 - Information sur l'altimétrie de la crue
 - Photographie



Informations relatives au ruissellement pluvial

Commune concernée :

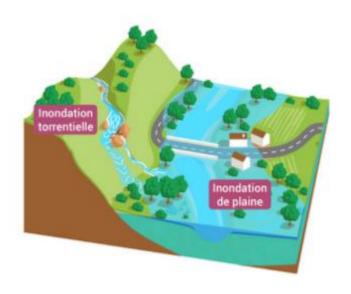
Rives d'Autises

Hydrologie - Débits caractéristiques de la Vendée à Mervent

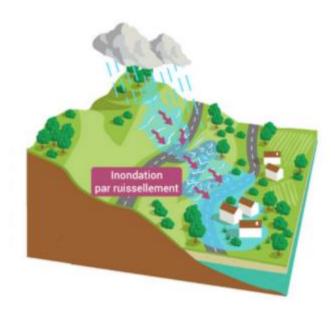
	Q10 (m3/s)	Q50(m3/s)	Q100(m3/s)
PPRI de 2001	196	305	352
SOGREAH 2006	205	302	356
Stucky 2008	206	320	380
BRL 2016	95	345	400

Hydrologie - Débits de la Sèvre Niortaise à La Tiffardière

	Q10(m3/s)	Q50(m3/s)	Q100(m3/s)
Soglereg – Sogreah (1993)	205	382	450
Soglereg – Sogreah (1993)	214	380	450
BRL 2016 – Méthode SCS	339	455	510
BRL 2016 – Méthode SHYPRE	254	371	425
BRL 2016 – Méthode GEV	228	329	373


Hydrologie - Débits de l'Autise

	Q10(m3/s)	Q50(m3/s)	Q100(m3/s)
Etude sur le bassin de la Sèvre Niortaise	58	76	85
BRL 2016 – Méthode GEV	57	64	65
BRL 2016 – Méthode SHYPRE	67	96	107
BRL 2016 – Méthode SCS	98	138	158
SHYREG	76	114	136

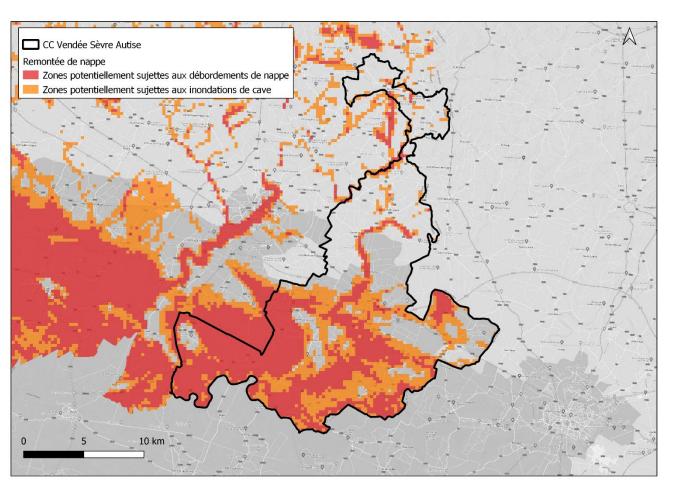


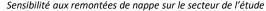
Les différents types d'inondation

Débordement de cours d'eau

Ruissellement pluvial

Remontée de nappe



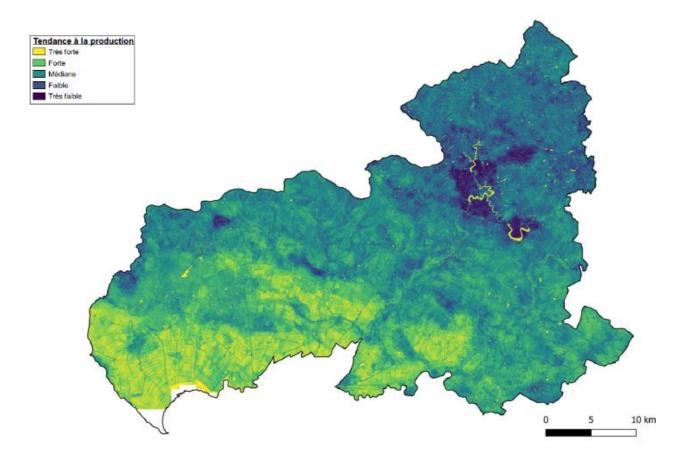

Remarque : submersion marine non-traitée dans le cadre de l'étude

Analyse des risques de remontées de nappe

- ➤ 63 postes piézométriques sur le bassin hydrographiques du Marais Poitevin
- > Analyse des chroniques de ces piézomètres
- Forte interaction entre les aquifères et cours d'eau

Ruissellement pluvial

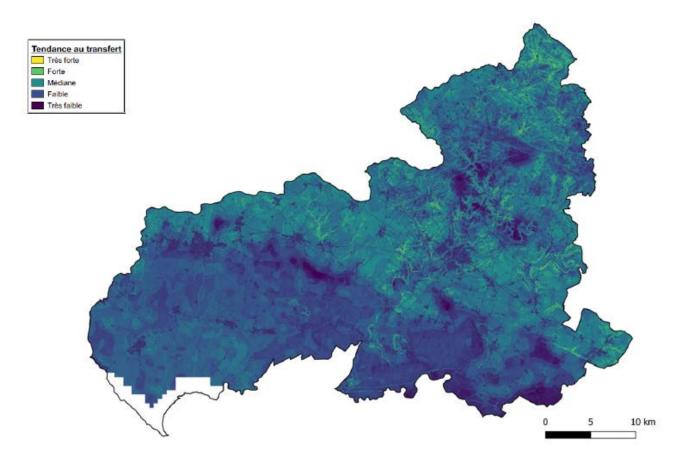
- Méthode ORUS développée par ARTELIA (type IRIP)
- Méthode cartographique à grande échelle
- 3 composantes du ruissellement analysées :
 - Production
 - Transfert
 - Accumulation



Ruissellement pluvial - Sensibilité à la production du ruissellement

Indicateurs utilisés:

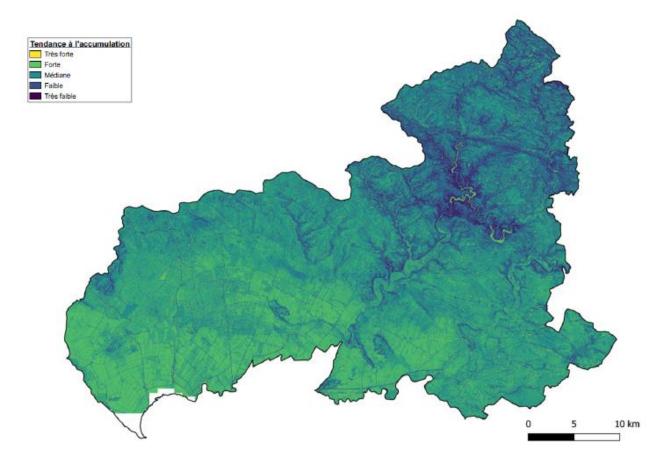
- Perméabilité des sols
- Battance
- Epaisseur des sols
- Occupation du sol
- Pentes + indice topographique

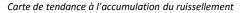

Carte de tendance à la production du ruissellement

Ruissellement pluvial - Sensibilité au transfert du ruissellement

Indicateurs utilisés:

- Production du ruissellement
- Pentes
- Ruptures de pente
- Aire drainée
- Erodibilité

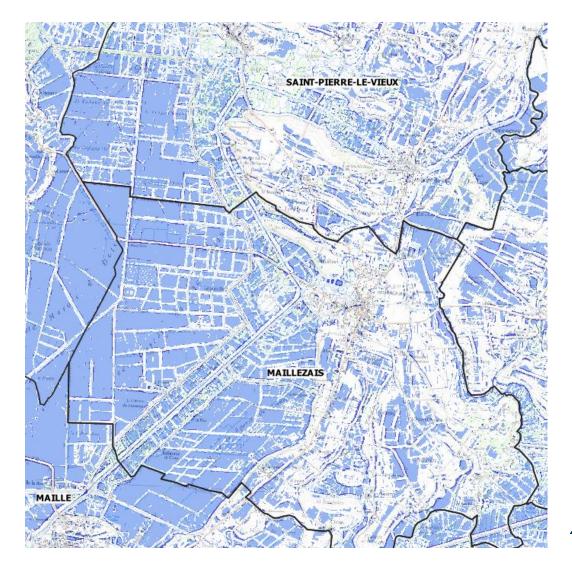

Carte de tendance au transfert du ruissellement



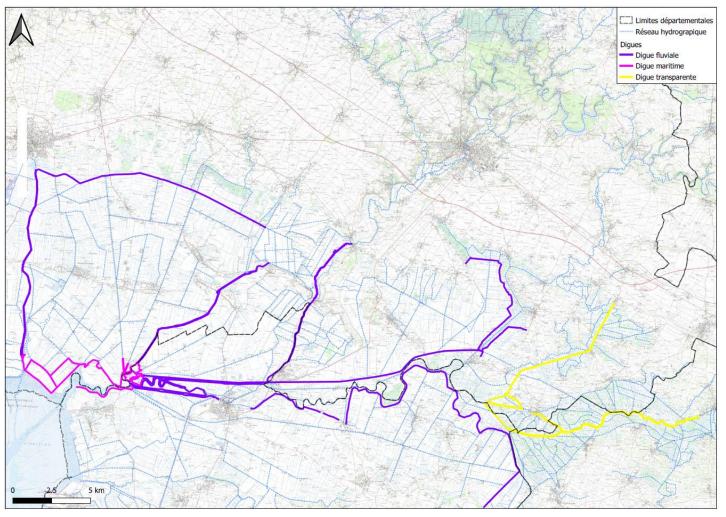
Ruissellement pluvial - Sensibilité à l'accumulation du ruissellement

Indicateurs utilisés:

- Production du ruissellement
- Pentes
- Ruptures de pente
- Aire drainée
- Indice topographique

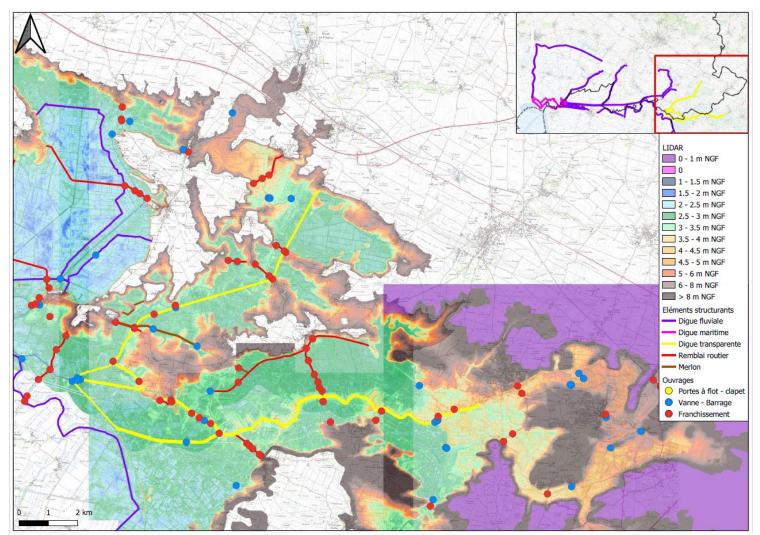


Ruissellement pluvial - Sensibilité à l'accumulation du ruissellement


Extrait sur le secteur de Saint Pierre le Vieux / Maillezais :

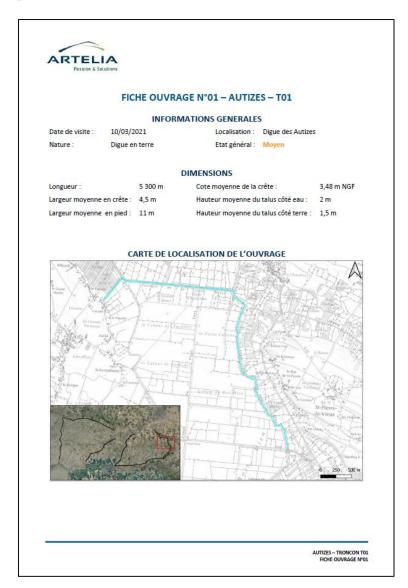
- ➤ Talwegs principaux présentant un risque d'accumulation fort
- Zones de marais également soumises à un risque important d'accumulation

Typologie des digues


- Digues fluviales : Protection contre les inondations des terrains en arrière
- **Digues maritimes**: Protection contre les submersions marines
- Digues transparentes : Remblais routiers et merlons transparents à l'écoulement

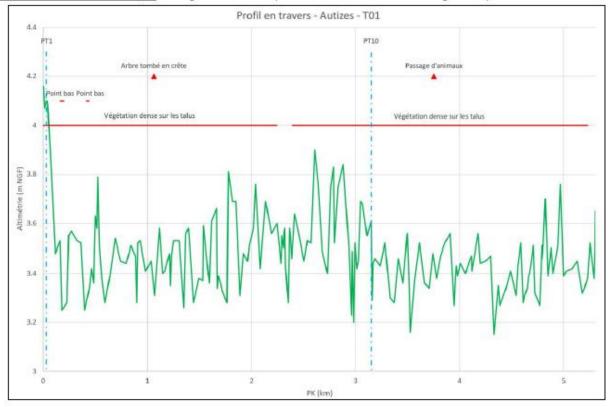
Remarques:

 digues du SMVSA : études en cours en vue de la déclaration du système d'endiguement


Eléments structurants et ouvrages

Caractéristiques des digues

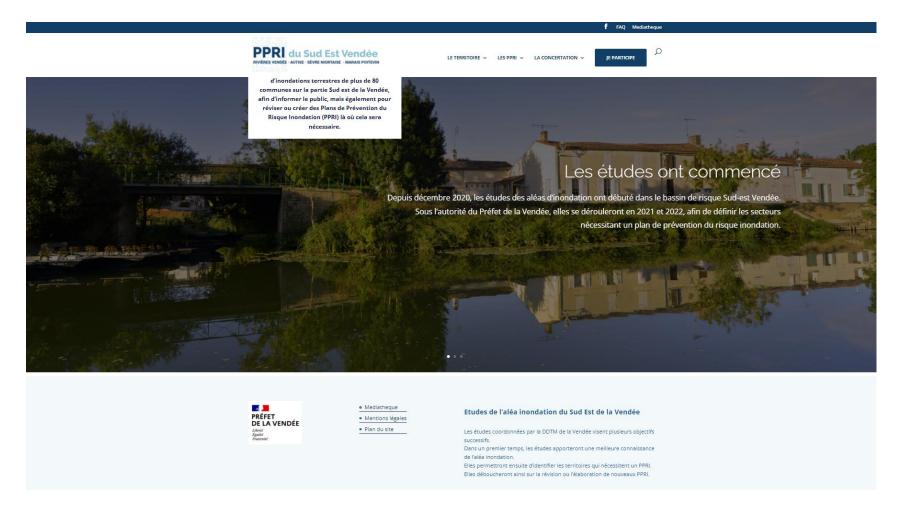
- > Digues fluviales découpées en 19 tronçons homogènes
- > Fiche ouvrage par tronçon détaillant :
 - Localisation
 - Etat général
 - Dimensions
 - Profils en travers représentatifs
 - Profil en long détaillant les désordres
 - Photos



Caractéristiques des digues

PROFIL EN LONG ET DESORDRES PRINCIPAUX

Commentaires sur l'état actuel de l'ouvrage : Une végétation dense est présente sur les deux talus de l'ouvrage sur la quasi-totalité du linéaire.


Synthèse de l'état des digues

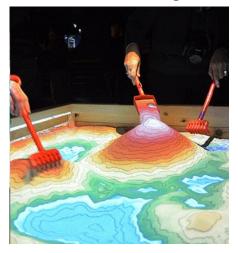
N° Fiche	Nom	Cours d'eau - Rive	Nature de la défense	Longueur (m)	Cote moyenne crête (m NGF)	Etat
1	Levée Neuve Levée de Bois Dieu	Jeune Autizes	Digue en terre	5 300	3,48	Moyen
2	Levée de Bois Dieu	Jeune Autizes	Digue en terre	4 200	3,57	Moyen
3	Levée de la bourse de Chaix Grande levée de Vix	Sèvre	Digue en terre	10 830	4,87	Moyen
4	Grande levée de Vix	Sèvre	Digue en terre	6 970	4,74	Moyen
5	Digue de la Vendée	Vendée RD	Digue en terre	4 930	3,65	Mauvais
6	Digue de la Vendée	Vendée RD	Digue en terre	6 000	3,33	Moyen
7	Digue de la Vendée	Vendée RG	Digue en terre	8 880	3,34	Moyen
8	Digue de la Perle	Canal des 5 Abbés - RD	Digue en terre	1 500	3,58	Moyen
9	Digue des 5 Abbés	Canal des 5 Abbés - RD	Digue en terre	3 680	3,36	Moyen
10	Digue des 5 Abbés	Canal des 5 Abbés - RD	Digue en terre	2 210	3,33	Bon
11	Digue des 5 Abbés	Canal des 5 Abbés - RD	Digue en terre	3 720	3,27	Moyen
12	Digue des 5 Abbés	Canal des 5 Abbés - RG	Digue en terre	5 130	3,49	Moyen
13	Digue des 5 Abbés	Canal des 5 Abbés - RG	Digue en terre	2 480	3,35	Moyen
14	Digue des 5 Abbés	Canal des 5 Abbés - RG	Digue en terre	2 770	3,39	Moyen
15	Digue de la Ceinture des Hollandais	Ceinture des Hollandais - RG	Digue en terre	310	3,37	Moyen
16	Digue de la Ceinture des Hollandais	Ceinture des Hollandais - RG	Remblai routier	1 100	3,51	Bon
17	Digue de la Ceinture des Hollandais	Ceinture des Hollandais - RG	Digue en terre	13 130	3,47	Moyen
18	Digue de la Ceinture des Hollandais	Ceinture des Hollandais - RG	Digue en terre	1 260	3,64	Moyen
19	Digue du canal de Luçon	Canal de Luçon - RG	Digue en terre	12 380	3,90	Moyen

8. Communication

Site internet : www.ppri-sudest-vendee.fr/

- Ajout de pages à venir suite au rapport de phase 1
- > Documents mis en ligne :
 - Rapport
 - Annexes
 - o Diaporama
 - o Compte-rendu

8. Communication


Journées du Risque Inondation

- Dates: vendredi 13 et samedi 14 mai 2022
- Lieu: salle des OPS à Fontenay-le-Comte
- > Public:
 - ✓ Vendredi : scolaire en journée ; tout public le soir
 - ✓ Samedi : tout public
- Programme :
 - ✓ Des animations
 - ✓ Des contenus ludiques
 - ✓ Des tables rondes
 - ✓ Des expositions
- **Communication**:
 - ✓ Sollicitation des partenaires courant avril

Show: "Hé ... La Mer monte!"

Bac à sable à réalité augmentée

9. Planning prévisionnel

- ➤ Retour des différentes remarques sur la phase 1 (rapport, fiches laisses de crues, fiches ouvrages) : Fin avril
- > Journées du Risque Inondation : 13 et 14 mai 2022
- > COPIL de validation : Mai-Juin 2022
- Caractérisation des aléas : 2nd semestre 2022
- > Définition des aléas et proposition des PPRi à prescrire : 1^{er} semestre 2023

